AI+ Quantum™
Harness Quantum Power with AI
- AI + Quantum Integration: Explore Quantum Gates, Circuits, and AI applications
- Advanced Learnings: Includes Quantum Deep Learning and transformative AI methodologies
- Industry-Oriented: Real-world case studies and trend analysis
- Ethical Focus: Learn implications of quantum AI responsibly and efficiently
Módulos
- Module 1: Overview of Artificial Intelligence (AI) and Quantum Computing :
- 1.1 Artificial Intelligence Refresher
- 1.2 Quantum Computing Refresher
- Module 2: Quantum Computing Gates, Circuits, and Algorithms :
- 2.1 Quantum Gates and their Representation
- 2.2 Multi Qubit Systems and Multi Qubit Gates
- Module 3: Quantum Algorithms for AI:
- 3.1 Core Quantum Algorithms
- 3.2 QFT and Variational Quantum Algorithms
- Module 4: Quantum Machine Learning :
- 4.1 Algorithms for Regression and Classification
- 4.2 Algorithms for Dimensionality and Clustering
- Module 5: Quantum Deep Learning :
- 5.1 Algorithms for Neural Networks – Part I
- 5.2 Algorithms for Neural Networks – Part II
- Module 6: Ethical Considerations :
- 6.1 Ethics for Artificial Intelligence
- 6.2 Ethics for Quantum Computing
- Module 7: Trends and Outlook :
- 7.1 Current Trends and Tools
- 7.2 Future Outlook and Investment
- Module 8: Use Cases & Case Studies:
- 8.1 Quantum Use Cases
- 8.2 QML Case Studies
- Module 9: Workshop :
- 9.1 Project – I: QSVM for Iris Dataset
- 9.2 Project – II: VQC/QNN on Iris Dataset
- 9.3 Bonus: IBM Quantum Computers
- Optional Module: AI Agents for Quantum:
- 1. What Are AI Agents
- 2. Key Capabilities of AI Agents in Quantum Computing
- 3. Applications and Trends for AI Agents in Quantum Computing
- 4. How Does an AI Agent Work
- 5. Core Characteristics of AI Agents
- 6. Types of AI Agents
Herramientas de IA
- IBM Qiskit
- D-Wave Leap
- Google TensorFlow Quantum (TFQ)
- Amazon Braket